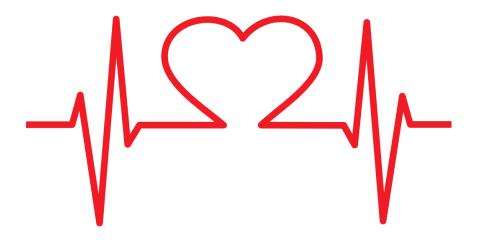
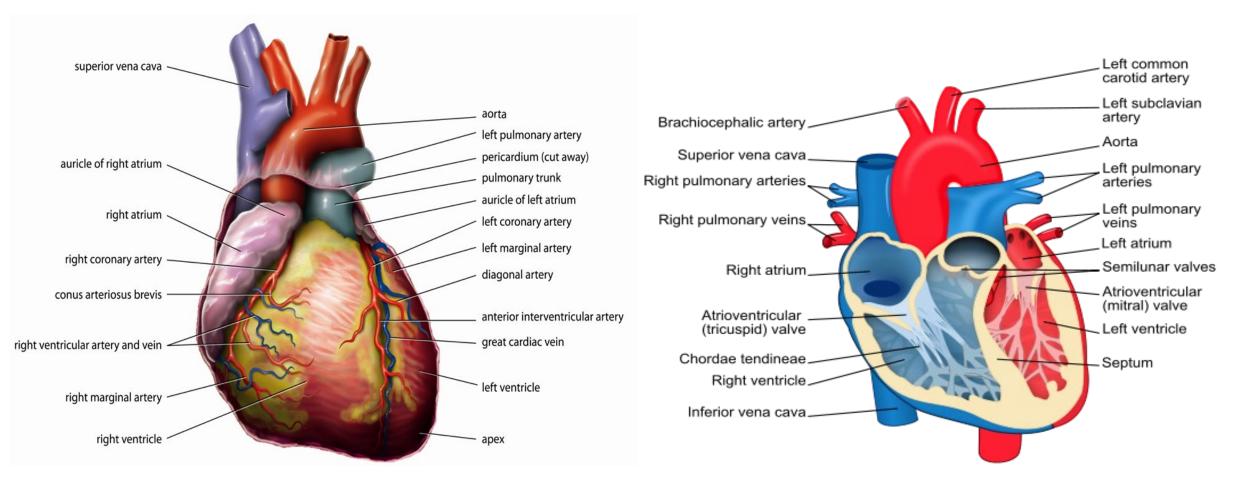


RGA

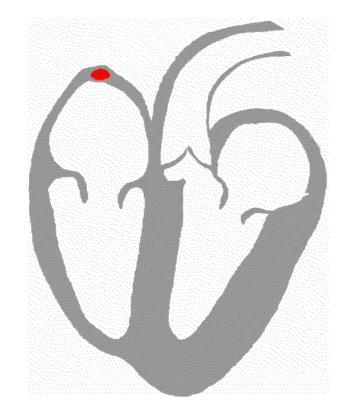

Heart Failure or Dysfunction?

What's the Difference?


Valerie R. Kaufman, MD, FACC, DBIM 10.7.22

Agenda

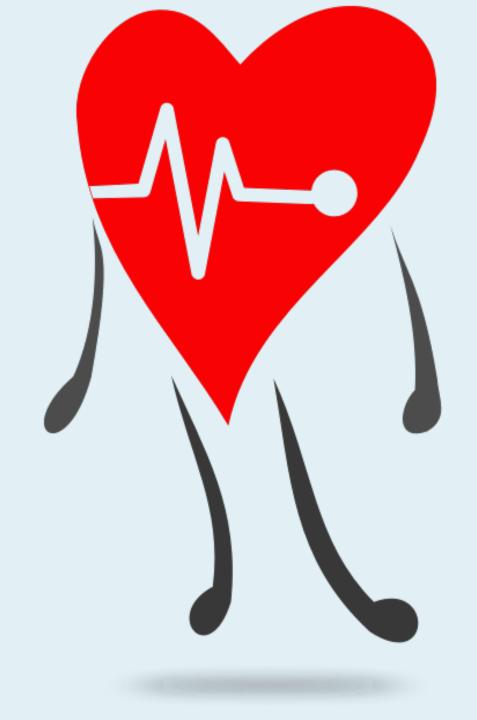
- Systolic Function and Dysfunction
 - Ejection fraction and wall motion
 - Global longitudinal strain
 - LV dilatation
- Diastolic Function and Dysfunction
- Echo report example
- Heart Failure
- What's the difference?


Anatomy of the Heart

RGA

Cardiac Output

- The myocardium is constantly working
 - Cardiac output: About five liters of blood/minute
 - About 100,000 heartbeats/day
 - Pumps about 2,600 gallons of blood/day
- Cardiac reserve
 - Cardiac output may be increased to as much as 35 liters/minute
 - Early stages of disease of the heart often associated with reduced cardiac reserve
 - Cardiac reserve diminishes with aging



Systolic Function and Dysfunction

Systolic Function: Cardiac Output

Cardiac Output = Amount of blood pumped in one minute

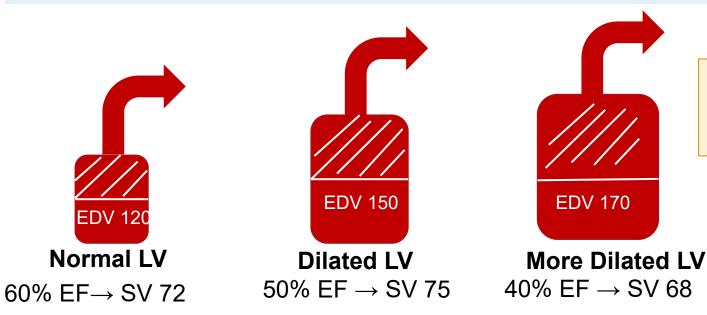
- = Stroke volume x heart rate
- Stroke Volume = Amount of blood pumped a single heartbeat (systole)
 - = End diastolic volume end systolic volume
 - = Ejection fraction x end diastolic volume
- Ejection Fraction = Percentage of blood in ventricle at end diastole that is ejected during systole
 - = Stroke volume

End diastolic volume

Systolic Function: Ejection Fraction and Wall Motion

- Ejection fraction
 - Normal: 50% 75%
 - Reduced: < 50%</p>
 - Hyperdynamic: > 75%
- Wall motion

Diastole Systole Diastole

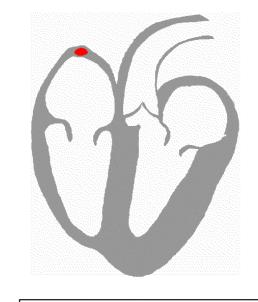


- Hypokinesis decreased motion
- o Akinesis no motion
- o Dyskinesis abnormal motion
- o Hyperkinesis increased motion
- Focal or generalized abnormality

Left Ventricular Dilatation

- LV dilatation is a sign of impaired systolic function
 - Myocardial damage (MI, myocarditis, CM)
 - Volume overload (AI, MR)
 - Pressure overload (HTN, AS)

Ejection Fraction x End Diastolic Volume = Stroke Volume Cardiac Output = Stroke Volume x Heart Rate


Normal LV Size

- Men Up to 5.7 cm
- Women Up to 5.4 cm

LV dilatation may help maintain SV and CO to a point, but is associated with <u>reduced cardiac reserve</u>

Systolic Function: Global Longitudinal Strain (GLS)

- Measure of longitudinal shortening of LV during systole compared to baseline
- Measured by echocardiography: speckle strain imaging
- Detects systolic dysfunction earlier than EF
- May be expressed as a negative number use the absolute value
- Range for GLS
 - Normal: > 18%
 - Borderline: 16-18%
 - Significant systolic dysfunction: < 16%

Systolic Dysfunction

- Prevalence
 - Mayo Clinic study, ages \geq 45, no history of heart failure: up to 6%
- Signs
 - Dilated LV
 - Decreased EF
 - Abnormal global longitudinal strain (GLS)
 - Increased NTproBNP
- Symptoms
 - Often asymptomatic (as many as 75% of cases)
 - Possibly reduced exercise capacity or DOE
 - In later stages, symptoms of heart failure
- Significance for underwriting: arrhythmias and progression to heart failure

Causes of Systolic Dysfunction

Myocardial Damage

- Hypertensive heart disease
- Chronic ischemia or MI
- Myocarditis
- Cardiomyopathy
 - Dilated (nonischemic) CM
 - Tachycardia-mediated
 - Peripartum
 - Alcoholic

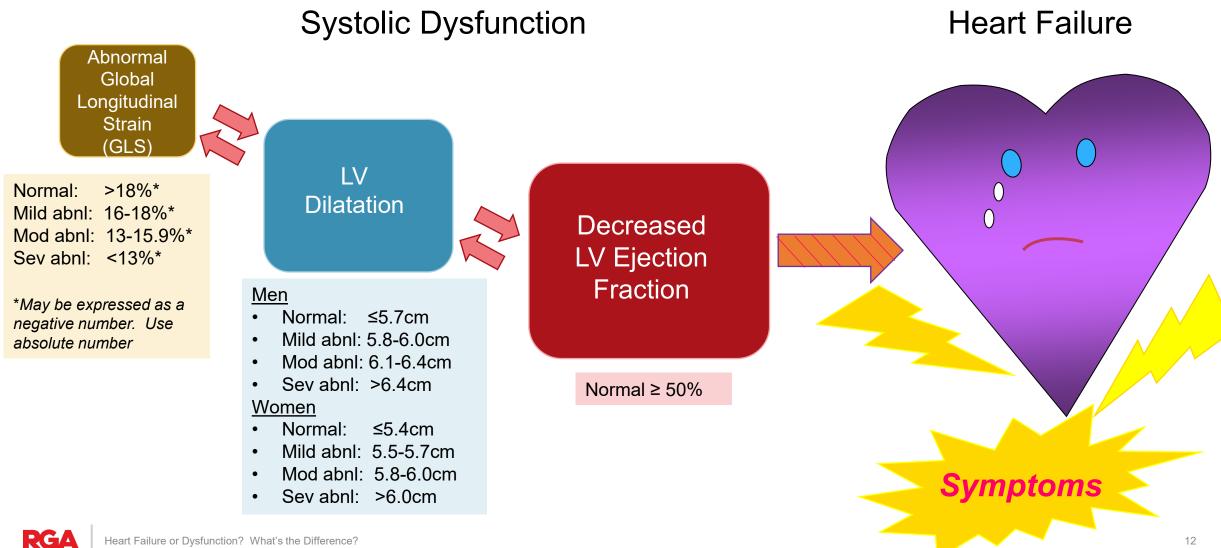
RGA

Infiltrative diseases

Volume Overload

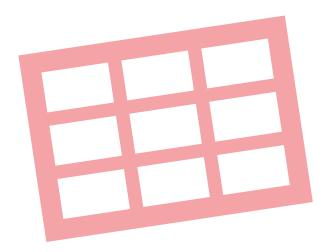
- Mitral regurgitation
- Aortic regurgitation
- latrogenic (over hydration)

Pressure Overload

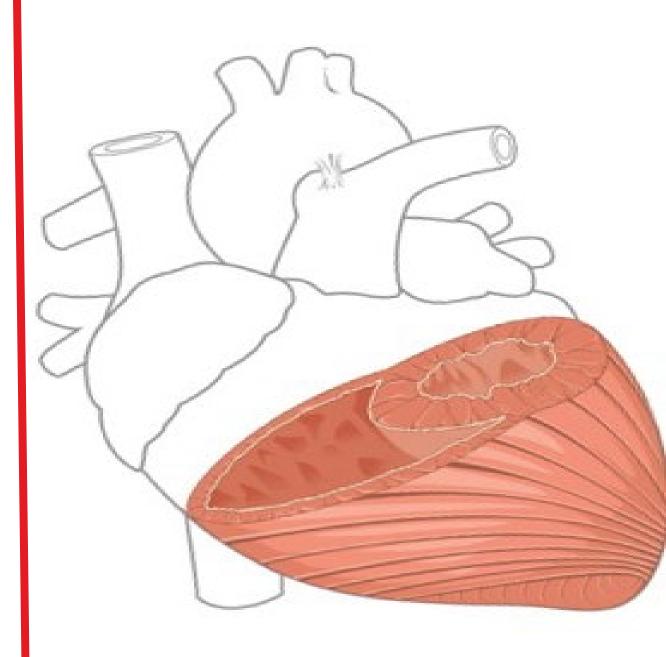

- Aortic stenosis
- HTN
- Obstructive HCM

Miscellaneous

- Volume depletion
- Hypoxia
- Congenital heart disease
- Tachyarrhythmias
- Bradyarrhythmias


Heart Failure or Dysfunction? What's the Difference?

Systolic Dysfunction: Pathway to Heart Failure

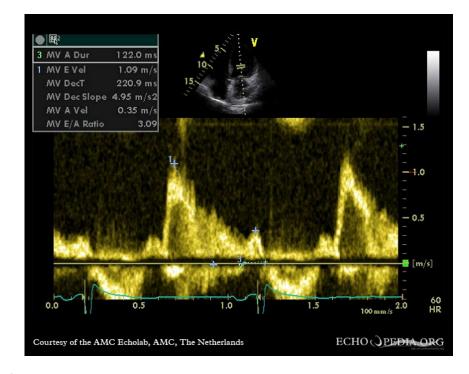

Systolic Dysfunction – Risk Assessment

- Systolic dysfunction includes
 - Decreased EF (< 50%)
 - LV dilatation
 - Abnormal global longitudinal strain (GLS)
 - Diagnosed nonischemic / dilated cardiomyopathy
- Risk depends on
 - Cause, if known
 - Age
 - LV size
 - EF and GLS
 - Arrhythmias
- Modified by NTproBNP

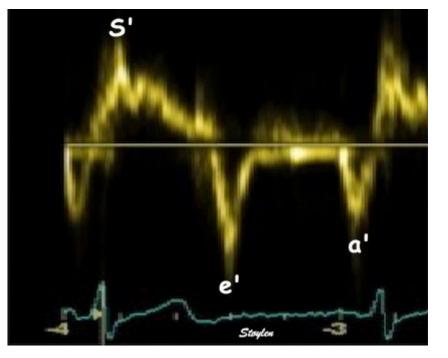
Diastolic Function and Dysfunction

Diastolic Function

- Includes
 - Ability of myocardium to relax in between contractions (active, energy-dependent process)
 - Compliance (stretchiness) of myocardium (characteristic of the tissue)
 - Filling pressures
 - o Left atrial pressure
 - o Left ventricular end diastolic pressure
- Good diastolic function is necessary for optimal cardiac function
- If ventricle doesn't fill properly, less blood gets pumped out

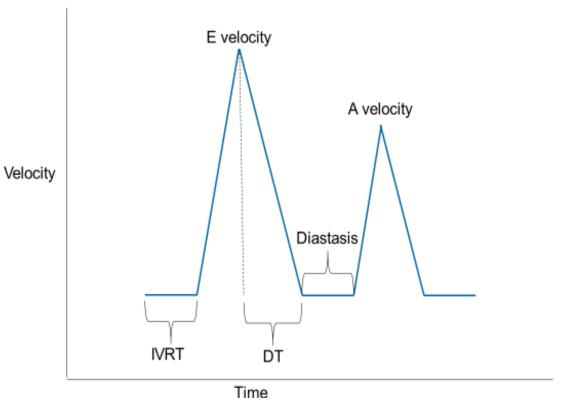

Ejection Fraction x End Diastolic Volume = Stroke Volume

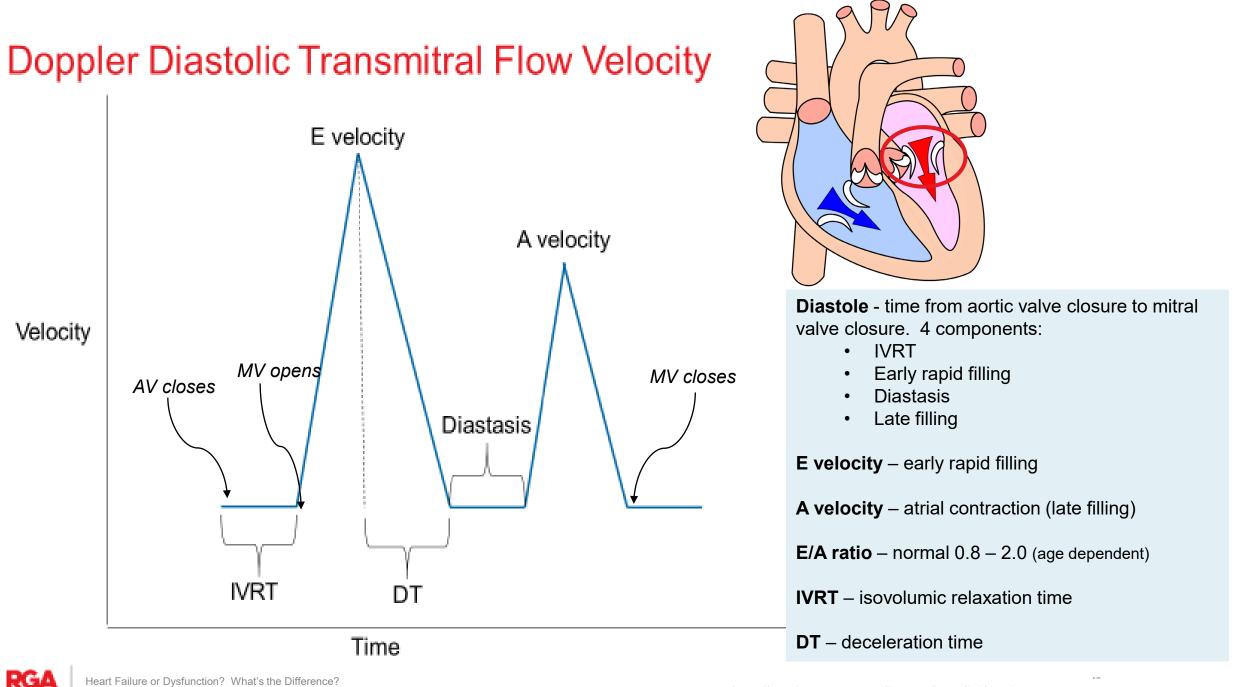
 $\downarrow \mathsf{EF} \text{ or } \downarrow \mathsf{EDV} \rightarrow \downarrow \mathsf{SV}$


Stroke Volume x Heart Rate = Cardiac Output \downarrow SV or \downarrow HR $\rightarrow \downarrow$ CO

Assessment of Diastolic Function

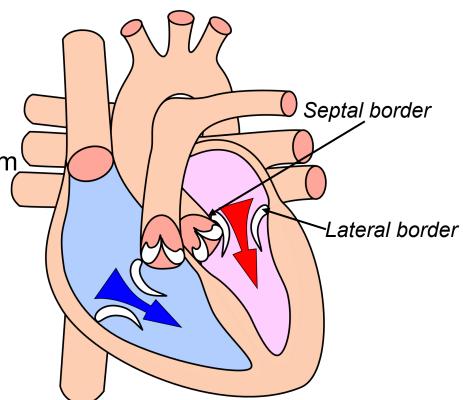
- Difficult, complicated. No single measurement like EF
- Must consider multiple factors to determine if normal or abnormal
- If abnormal, other factors determine severity or grade
- Almost all factors dependent on Doppler echo

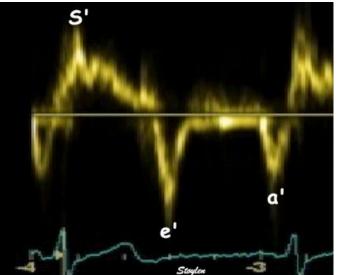



https://creativecommons.org/licenses/by-sa/3.0/deed.en https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_LicenseCreative Commons Attribution ShareAlike 3.0. Asbjorn Stoylen

RGA

Diastolic Transmitral Flow


- One of easier ways to assess diastolic function; done often
- Measured by pulse wave Doppler (looking at blood flow characteristics)
- Only one component of diastolic function cannot determine presence or absence of diastolic dysfunction by transmitral flow alone
- Values change with age
 - E velocity decreases with increasing age
 - A velocity increases with increasing age
 - E/A ratio decreases with increasing age



Tissue Doppler Imaging (TDI)

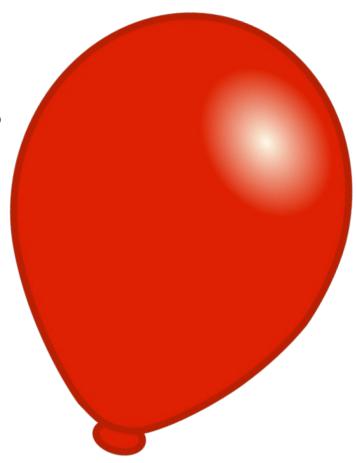
- Usual (pulse wave) echo Doppler assesses flow of blood
- Tissue Doppler imaging (TDI) assesses motion of myocardium
- Assessment of diastolic function includes TDI of the septal and lateral borders of the mitral annulus
 - e' early diastolic motion
 - a' late diastolic motion
- e' reflects relaxation of myocardium
- E/e' ratio can be used to estimate left atrial pressure in those with diastolic dysfunction

https://creativecommons.org/licenses/by-sa/3.0/deed.en https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_ Free_Documentation_LicenseCreative Commons Attribution ShareAlike 3.0. Asbiorn Stovlen

Diagnosis of Diastolic Dysfunction with Normal EF

✓ Average E/e' ≥ 14
 ✓ Septal e' velocity < 7 cm/s or lateral e' velocity < 10 cm/s
 ✓ Peak velocity of tricuspid regurgitation > 2.8 m/s
 ✓ LA volume index > 34 ml/m²

- If 0-1 of above criteria met: Normal diastolic function
- If 3-4 of above criteria met: Abnormal diastolic function
- If exactly 2 of above criteria met: Indeterminate diastolic function


Severity (Grade) of Diastolic Dysfunction

Diastolic Function	Normal	Grade 1 Impaired Relaxation	Grade 2 Pseudonormal	Grade 3 Restriction
LV relaxation	Normal	Impaired	Impaired	Impaired
LV compliance	Normal	Normal or ↓	Decreased	Decreased
LA pressure	Normal	Low or normal	Increased	Increased
Mitral inflow	E/A>0.8 but <2	E/A≤0.8 Peak E ≤50 cm/s	E/A>0.8 but <2	E/A≥2
IVRT	<70 msec	>90 msec	<90 msec	<70 msec
DT	>140 msec	>220 msec	<220 msec	<140 msec
Mitral inflow, Valsalva	∆E/A <0.5	∆E/A <0.5	∆E/A ≥0.5	ΔE/A ≥0.5 (reversible) ΔE/A <0.5 (fixed)
Tissue Doppler	E/e'<10	E/e'<10	E/e' ≥10-14	E/e' ≥14
Pulmonary venous	S≥D	S>D	S <d< td=""><td>S<d< td=""></d<></td></d<>	S <d< td=""></d<>
Peak TR velocity	<2.8	<2.8	>2.8	>2.8
LA volume index	Normal	Normal or ↑	Increased	Increased

Diastolic Dysfunction

- Prevalence
 - Mayo Clinic study, ages \geq 45, no history of heart failure: up to 25%
- Signs
 - Echo Doppler abnormalities
 - Increased NTproBNP
- Symptoms
 - Often asymptomatic
 - Possibly reduced exercise capacity or DOE
 - In later stages, symptoms of heart failure
- Significance for underwriting
 - Marker for underlying disease process
 - Risk of progression to heart failure

Risk Assessment for Diastolic Dysfunction

- History of heart failure Very High Risk
- LVEF < 50% rate for systolic dysfunction, no additional rating needed for DD</p>
- Ratable cardiac impairment (valvular disease, cardiomyopathy, CAD, LVH) rate for cardiac impairment, no additional rating needed for DD
- With LVEF \geq 50%, no other cardiac impairment

Grade of Diastolic Dysfunction	Rating
Grade 1: Impaired relaxation	Very favorable, consider normal with aging
Grade 2: Pseudonormal	Favorable in absence of other abnormalities
Grade 3: Restriction	Refer to MD, usually high risk

✓ Average E/e'	≥ 1	4
----------------	-----	---

✓ Septal e' velocity < 7 cm/s or lateral e' velocity < 10 cm/s \checkmark Peak velocity of tricuspid regurgitation > 2.8 m/s \checkmark LA volume index > 34 ml/m²

CO

Normal left ventricular cavity size. Normal left ventricular wall thickness. Normal global left ventricular systolic function. EF estimated at 60-65%. Abnormal diastolic filling pattern for age. Normal pulmonary artery systolic pressure. No significant valve abnormalities noted in current study. 1. Left Ventricle: Normal left ventricular cavity size. Normal left

ventricular wall thickness. Normal global left ventricular systolic. function, EF estimated at 60-65%. Abnormal diastolic filling pattern for age.

2. Right Ventricle: Normal right ventricular size. Normal right ventricular global systolic function.

3. Left Atrium: Normal left atrial size.

4. Right Atrium: Normal right atrial size. Right atrial pressure estimated at 3 mmHg.

Interatrial Septum: Intact interatrial septum.

6. Mitral Valve: Structurally/functionally normal mitral valve. No mitral regurgitation noted.

7: Aortic Vi

regurgitatic

Tricuspi Trace tricu systolic pre

9. Pulmoni pulmonary 10. Aorta:

in size.

Pericar

E/A 0.81

Peak velocity of TR: 208 cm/s = 2.08 m/s

LA size by measured diameter is normal

No tissue Doppler (e' or a') values

MEASUREMENTS (Normal Values)

2D ECHO LV Diastolic Diameter PLAX LV Systolic Diameter PLAX LV Fractional Shortening PLAX RV Internal Dim ED PLAX IVS Diastolic Thickness LVPW Diastolic Thickness LVPW Diastolic Thickness LVPW Diastolic Thickness LVPW Diastolic Thickness LVOT Diameter LX LVOT Diameter LVOT Area Aorta at Sinuses Diameter LV Systolic Volume 2D Cubed Ascending Aorta Diameter	4.46 cm 2.43 cm 45.47 % 2.11 cm 1.10 cm 1.06 cm <u>3.19 cm</u> 1.73 cm 2.34 cm2 2.98 cm 14.41 cm3 3.35 cm	4.2 - 5.9 / 3.9 - 5.3 cm 2.1-4.0 cm 25-46 % 3.0-4.0 / 2.7-3.8 cm
DOPPLER AV Velocity Time Integral AV Peak Velocity AV Peak Gradient AV Mean Velocity AV Mean Gradient LVOT Velocity Time Integral LVOT Peak Velocity LVOT Peak Gradient LVOT Mean Velocity LVOT Mean Gradient AV Area Cont Eq vti AV Area Cont Eq vti AV Area Cont Eq pk. Mitral E Point Velocity Mitral A Point Velocity Mitral E to A Ratio MV Deceleration Time TR Peak Gradient PV Peak Velocity PV Peak Gradient	27.66 cm 135.06 cm/s 7.30 mmHg 94.40 cm/s 3.93 mmHg 23.48 cm 106.79 cm/s 4.56 mmHg 78.11 cm/s 2.67 mmHg 1.99 cm2 1.85 cm2 81.11 cm/s 99.91 cm/s 0.81 220.03 ms 208.27 cm/s 17.35 mmHg 88.88 cm/s 3.16 mmHg	

Diagnosis of Diastolic Dysfunction with Normal EF

Case Details

- E/A 0.81
- *Peak velocity of TR: 208 cm/s = 2.08 m/s*
- LA size by measured diameter is normal
- No tissue Doppler (e' or a') values

Diagnostic Criteria for Diastolic Dysfunction

✓ Average E/e' ≥ 14
 ✓ Septal e' velocity < 7 cm/s or lateral e' velocity < 10 cm/s
 ✓ Peak velocity of tricuspid regurgitation > 2.8 m/s
 ✓ LA volume index > 34 ml/m²

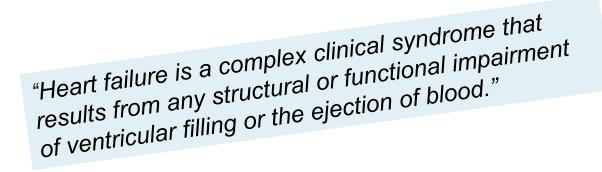
If 0-1 of above criteria met: Normal diastolic function If 3-4 of above criteria met: Abnormal diastolic function If exactly 2 of above criteria met: Indeterminate diastolic function <u>Summary</u> 0 criteria met 2 unknown At worst, indeterminate

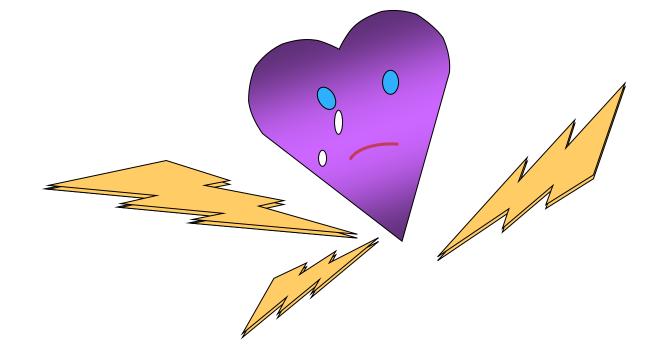
Risk Assessment for Diastolic Dysfunction

- History of heart failure Very High Risk
- LVEF < 50% rate for systolic dysfunction, no additional rating needed for DD</p>
- Ratable cardiac impairment (valvular disease, cardiomyopathy, CAD, LVH) rate for cardiac impairment, no additional rating needed for DD
- With LVEF \geq 50%, no other cardiac impairment

Grade of Diastolic Dysfunction	Rating
Grade 1: Impaired relaxation	Very favorable, consider normal with aging
Grade 2: Pseudonormal	Favorable in absence of other abnormalities
Grade 3: Restriction	Refer to MD, usually high risk

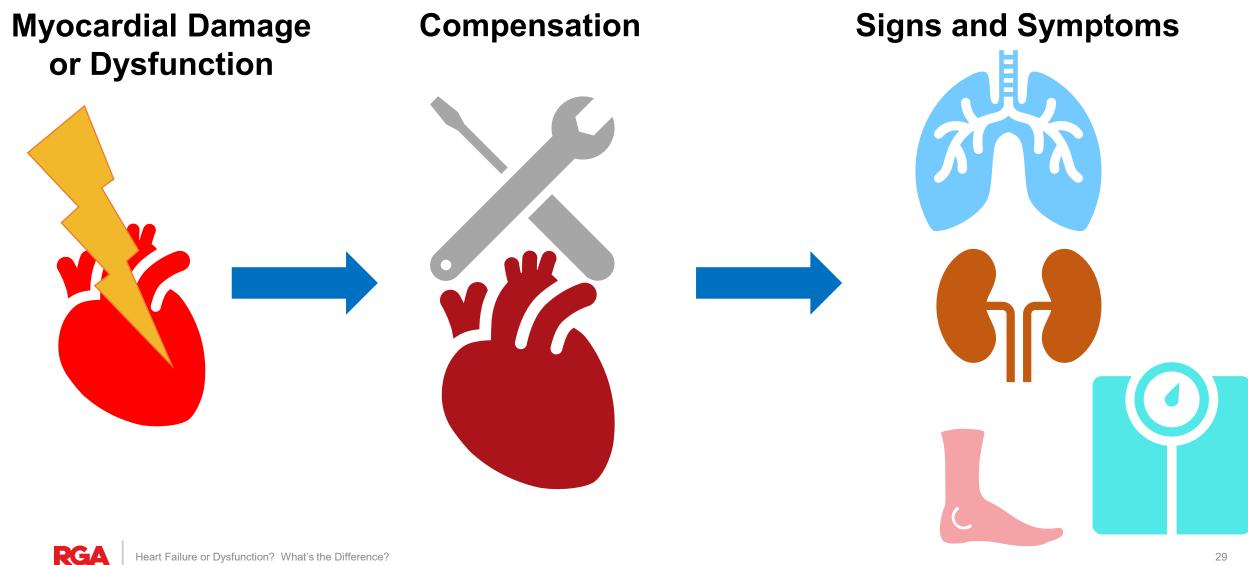
Indeterminate Diastolic Function: Consider favorably




Heart Failure

What is Heart Failure?

"Heart fails to pump blood at a rate commensurate with the requirements of metabolizing tissues or is able to do so only with an elevated diastolic filling pressure"


Signs and <u>symptoms</u> of inadequate cardiac output

Yancy CW et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. JACC 2013;62:e147-239.

Heart Failure or Dysfunction? What's the Difference?

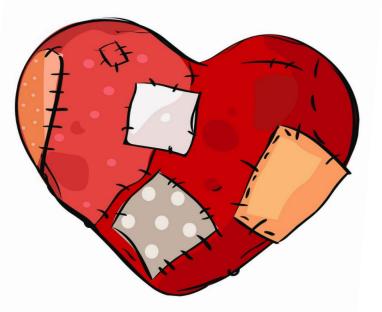
Dumitru I. Heart Failure. The Heart.org/Medscape. Updated 3/2/21. Accessed 7/7/21

Pathophysiology of Heart Failure

Heart Failure or Dysfunction? What's the Difference?

Cardinal Manifestations of HF

- Dyspnea, fatigue and exercise intolerance
- Symptoms of fluid retention
 - PND, orthopnea and nocturnal cough
 - Cardiac asthma (wheezing)
 - Anorexia, nausea, early satiety
 - Right upper quadrant pain
 - Peripheral edema



In heart failure, there is poor correlation between measures of cardiac performance and symptoms

Causes of Heart Failure

- Risk Factors
 - Obesity
 - Hypertension
 - Diabetes/Metabolic syndrome
 - Atherosclerotic disease
- Any cardiac disease: Final Common Pathway
 - CAD
 - Myocarditis/Cardiomyopathy
 - Valvular heart disease
 - Congenital heart disease
 - Hypertensive heart disease
 - Chronic arrhythmias
 - Pericardial diseases

- Chronic lung disease
- Pulmonary vascular disorders
- High output states such as thyrotoxicosis, chronic anemia, systemic AV shunting

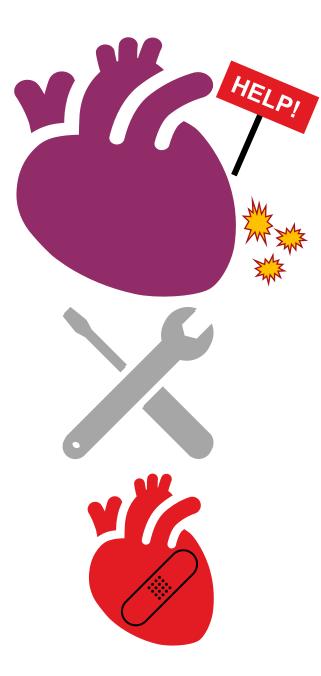
Epidemiology

- Worldwide problem, with more than 20 million affected (5 million in US)
- Prevalence in developed countries about 2% and increasing
- Incidence increases with age
- May occur with normal (preserved) EF HFpEF (40 50% of cases)
- May occur with reduced EF HFrEF (50-60% of cases)
- Development of symptomatic heart failure carries poor prognosis
 - > 20% die within 1 year of diagnosis
 - 50% die within 5 years of diagnosis
 - Functional class (NYHA) is a predictor of outcome

Heart Failure with Reduced or Preserved (Normal) Ejection Fraction

HFrEF

Heart Failure with Reduced EF


- Formerly called systolic heart failure
- Impaired ability to eject blood (systolic dysfunction)
- Reduced ejection fraction, usually ≤ 40%
- Wall motion abnormalities
- Often dilated LV (50% of cases)

HFpEF or HFnEF

- <u>Heart Failure with Preserved or</u> <u>Normal EF</u>
- Formerly called diastolic heart failure
- Impaired ability to fill with blood (diastolic dysfunction)
- Normal ejection fraction, usually ≥ 50%
- Often thick walls (LVH) with dilated LA
- Usually normal LV size
- Diagnosis of exclusion

Additional Terminology

- Overt or Decompensated heart failure
 - Signs and <u>symptoms</u> present
 - Acute episode of pulmonary edema
 - Increasing lethargy and malaise
 - Decreased exercise tolerance/increased DOE
- Compensated heart failure
 - Improved or no signs or <u>symptoms</u> currently
 - Stabilized on medications
 - Prone to "decompensating" and requiring med adjustment
 - Limited cardiac reserve

Stages of Heart Failure

ACC/AHA Stage	Description	NYHA Class
A	At high risk for heart failure but without symptoms, structural heart disease or blood tests indicating myocardial injury (Ex: HTN)	None
В	 Pre-heart failure. No signs or symptoms of heart failure, but evidence of one of the following: Structural heart disease (Ex: reduced EF, LV enlargement, LVH, valvular heart disease) Increased filling pressures as measured by cath or echo Risk factors from Stage A plus elevated BNP/NTproBNP or persistently elevated troponin 	None
С	Symptomatic heart failure. Structural heart disease with previous or current symptoms of heart failure	Could be Class I, II or III
D	Advanced heart failure with symptoms that interfered with daily life, are difficult to control and result in recurrent hospitalizations despite guideline-directed medical therapy	Class IV

RGA

Key Takeaways

✓ LV dilatation is a key marker for systolic dysfunction

✓ Risk with systolic dysfunction should be assessed according to

- Cause, if known
- Age
- LV size
- EF
- GLS
- Diastolic function and dysfunction is very complicated to assess, but has limited mortality implication in isolation
- ✓ Systolic and diastolic dysfunction can lead to heart failure
- ✓ Heart failure means <u>symptoms</u> related to inadequate cardiac function
- ✓ Mortality and morbidity are very high in heart failure

©2019 RGA. All rights reserved.

No part of this publication may be reproduced in any form without the prior permission of RGA. The information in this publication is for the exclusive, internal use of the recipient and may not be relied upon by any other party other than the recipient and its affiliates, or published, quoted or disseminated to any party other than the recipient without the prior written consent of RGA.

